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Abstract:  

We address the question, in decision theory, of how the value of risky options (gambles) should 

be assessed when they have no finite standard expected value, that is, where the sum of the 

probability-weighted payoffs is infinite or not well defined. We endorse, combine, and extend (1) 

the proposal of Easwaran (2008) to evaluate options on the basis of their weak expected value, 

and (2) the proposal of Colyvan (2008) to rank options on the basis of their relative expected 
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value.  
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We address the question, in decision theory, of how the value of risky options (gambles) should 

be assessed when they have no finite standard expected value, that is, where the sum of the 

probability-weighted payoffs is infinite or not well defined. We endorse, combine, and extend (1) 

the proposal of Easwaran (2008) to evaluate options on the basis of their weak expected value, 

and (2) the proposal of Colyvan (2008) to rank options on the basis of their relative expected 

value.  

 Our goal is to outline a framework rather than to give a compelling defense of it. We 

shall motivate, through the use of examples, the plausibility of principles that go beyond standard 

expected value.  

 

1. The Problem 

We address the question in decision-theory of how (risky) options should be evaluated when they 

have no finite standard expected value. In this section, we shall define these terms and explain 

the problem.  

Throughout, we restrict our attention to cases where an option determines a countable set 

{<p1,v1>, <p2,v2>, …, <pk,vk>, …}, where pk is the probability of receiving a payoff of vk. We 

thus do not address cases where there are uncountably-many distinct finite payoffs with non-zero 

probability. Nor do we address cases where probabilities or payoffs are undefined, involve 

infinitesimals, or are infinite. We further assume that the values of outcomes are independently 
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specified (e.g., monetary values or wellbeing values) on an interval scale. Thus, we assume that 

there is a fact about whether the difference in value between two outcomes is less, equal, or 

greater than the difference in value between two other outcomes. We leave open what kind of 

value (e.g., prudential vs. moral) is used, since that may vary based on the nature of the decision 

problem.  

We further assume that the evaluation of options is risk neutral. Thus, we assume that, in 

the standard cases, risky options are evaluated on the basis of their standard expected value, that 

is, on the basis of the probability-weighted sum p1v1 + p2v2 + … + pnvn + …. The problem, as we 

shall explain, is that sometimes this sum is not well defined. The usual assumption is that such 

options cannot be evaluated. We shall endorse principles proposed by Easwaran (2008) and 

Colyvan (2008) and then combine and extend those principles. 

The sum of a set of numbers is well-defined if and only if the order of summation does 

not matter, that is, if and only if each order of summation results in the same total. A crucial 

mathematical fact is that the sum of a (countable) set of numbers is well defined if and only if the 

sum of the positive terms is finite (or there are no such terms) or the sum of the negative terms is 

finite (or there are no such terms). If both sums are finite, the sum of the entire set is simply the 

sum of these two finite numbers. If one sum is finite, and the other sum is (positively or 

negatively) infinite, the sum of the entire set is well defined and correspondingly infinite. If both 

sums are infinite, then there is no well-defined sum. For such sets the order of summation 

matters. 

For example, for the set {…, –1/32, –1/8, –1/2, 1, 1/4, 1/16, …}, the sum of the positive 

numbers (1+1/4+1/16+… ) is 4/3 and the sum of the negative numbers (–1/2–1/8–1/32–…) is –

2/3. This establishes that the above set of values has a well-defined sum equal to 2/3 (=4/3–2/3). 
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For the set {–1/2, 1, 1/3, 1/5, …, 1/(2n+1), …}, the sum of the negatives is finite (–1/2) and the 

sum of the positives is infinite. Hence, this set has a well-defined sum, which is positive infinity. 

By contrast, for the set { …, –1/(2n),…, –1/6, –1/4, –1/2, 1, 1/3, 1/5, …, 1/(2n+1), …}, the sum 

of the negatives is infinite, as is the sum of the positives, and hence this set has no well-defined 

sum. 

Consider now the Pasadena game, introduced by Nover and Hájek (2004).
1
 A fair coin is 

flipped until a heads comes up, and one wins something if the number of flips is odd and loses 

something if the number of flips is even. More precisely, the payoffs, along with the associated 

probabilities are described as follows:  

 

Pasadena 

Positive payoffs: < 1/2, 2/1>, < 1/8, 8/3>, …, < 1/2
2n–1

, 2
2n–1

/(2n–1)>, …  

Negative payoffs: < 1/4, –4/2>, < 1/16, –16/4>, …, < 1/2
2n

, –2
2n

/2n>, … 

 

The set of probability-weighted payoffs is thus {…, –1/2n, …, –1/6, –1/4, –1/2, 1, 1/3, 1/5, …, 

1/(2n–1), …}. Given that the sum of the negatives is infinite and the sum of the positives is 

infinite, this set has no well-defined sum. Nonetheless, it seems natural to add these terms in the 

order of how many flips it takes for a heads to occur and thereby realize the payoff: 1 –1/2 + 1/3 

–1/4 …+1/(2n–1) –1/(2n) …. Added in this order, the sum is log(2), or approximately .69. The 

problem is that adding the terms in a different order can give a different sum. For example, 

adding the very same terms above in the following order (1+1/3–1/2)+(1/5+1/7–1/4)+(1/9+1/11–

                                                 

1
 See also, Hájek and Nover (2006), Hájek and Nover (2008), and Hájek (2009). 
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1/6)+ … produces a total of 1.5 log(2), or approximately 1.04. The sum is not well-defined 

precisely because there is no order-independent fact about what the terms sum to. 

The general problem that we address is the evaluation of risky options for which there is 

no standard expected value, defined as follows: 

 

Standard Expected Value. The standard expected value of an option exists and has value v 

(which can be infinite) if and only if the sum of the (countable many) probability-weighted 

payoffs is well defined and equals value v. 

 

Throughout, we allow that the value of an option can be infinite. Consider, for example, 

the well-known St. Petersburg game, where a fair coin is flipped until it lands on heads, and, if 

that takes n flips, the payoff is 2
n
. This determines the probability-payoff set {<1/2, 2>, <1/4, 4>, 

…, < 1/2
n
, 2

n
>, …}. This has a standard expected value equal to positive infinity, since the sum 

of the probability-weighted positive payoffs is infinite, and there are no negative payoffs.  

It is important to remember that having an infinitely positive value only establishes that 

the option is more valuable than any option with a finite value. Two options with infinite positive 

value need not be equally valuable. For example, if the payoffs of the St. Petersburg game are 

increased by one unit, the result is an infinitely valuable option that is arguably more valuable 

than the original, and certainly not equally valuable with it. 

 Throughout, we shall assume the following relatively uncontroversial claim, given our 

assumption of risk-neutrality: 

 

Standard Expectations. The value of an option is its standard (finite or infinite) expected value, 
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if it exists. 

 

 We shall now formulate and endorse some principles of evaluation when options have no 

standard expected value. More specifically, we shall combine and extend the weak expectations 

principle advocated by Easwaran (2008) and the relative expectations principle advocated by 

Colyvan (2008). 

 

2. Weak and Strong Expectations 

Kenny Easwaran (2008) has tentatively suggested that the Pasadena game (above) has a value of 

log(2) on the following basis: (1) He distinguishes between weak expected value and strong 

expected value (defined below). (2) He establishes that the Pasadena game has a weak expected 

value of log(2). (3) He tentatively suggests that, in general, risky options can be assessed on the 

basis of their weak expected value.  

Consider an option, X, and let E(X) be its standard expected value. Easwaran appeals to 

two versions of the law of large numbers to define weak and strong expected value for an option.  

Let Ave(X,n) be the average value of X for n independent trials. The two laws are:  

 

Strong Law of Large Numbers. For any option, X, for which E(X) exists, there is a probability 

of 1 that the limit, as n goes to infinity, of |Ave(X,n)–E(X)| is 0. 

 

Weak Law of Large Numbers. For any option, X, for which E(X) exists, for any positive 

number, e, the limit, as n goes to infinity, of the probability that |Ave(X,n)–E(X)|<e is 1.  
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Both laws concern the probability of the standard expected value and the sample average 

value being arbitrarily close to each other. The difference between the two laws concerns 

whether the limit, as the sample size goes to infinity, is internal to the probability assignment (the 

strong law) or external to it (the weak law). 

These two laws define the weak and strong expected value as follows: 

 

Finite Strong Expected Value. The strong expected value of an option, X, exists and has finite 

value v if and only if there exists a real number v such that, with probability 1 the limit, as n goes 

to infinity, of |Ave(X,n)–v| is  0. 

 

Finite Weak Expected Value. The weak expected value of an option, X, exists and has finite 

value v if and only if there exists a real number v such that, for each positive number e, the limit, 

as n goes to infinity, of the probability that |Ave(X,n)–v|<e is 1. 

 

In each of these definitions, the stochastic behavior of the sample average, Ave(X,n), is 

used to define a value for X. The strong expected value of X is the value v for which there is a 

probability of 1 that, for large enough sample sizes, the average value Ave(X,n) will be 

arbitrarily close to v. The weak expected value, by contrast, is the value v for which, for large 

enough sample sizes, there is a probability arbitrarily close to 1 that the average value will be 

arbitrarily close to v. Whenever the strong expected value is defined, the weak expected value is 

also defined and has the same value. 

 It turns out that, in the finite case, strong expected value just is standard expected value 

(although we shall see that this is not so in the infinite case): 
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Finite Strong Expected Value Lemma (based on Durrett 2005: Ch. 1, sec. 8). An option has a 

finite strong expected value of v if and only if it has a standard expected value of v. 

 

Thus, the following is equivalent to the uncontroversial Finite Standard Expectations: 

 

Finite Strong Expectations. The value of an option is its strong expected value, if it exists and 

is finite. 

 

Because Pasadena has no finite standard expected value, it has no finite strong expected 

value. Although the existence of a finite strong expected value entails the existence of a finite 

weak expected value, the reverse entailment does not hold. Indeed, as Easwaran shows, drawing 

on Feller (1971) and Durrett (2005), Pasadena has a weak expected value of log(2), even though 

it has no finite strong expected value.  

More generally, a necessary and sufficient condition for the existence of finite weak 

expected value is provided by the following lemma, where the terms are defined as follows. Let 

Pr(|X|>x) be the probability that the absolute value of the payoff of option X is greater than the 

real number x. Say that an option has thin tails if and only if x multiplied by Pr(|X|>x) converges 

to zero as x goes to positive infinity. Finally, let Xn be an option with the same payoffs as X, 

except that all payoffs with absolute values above n are set equal to zero. For example, for 

Pasadena, X, X2 sets all absolute payoffs above 2 equal to 0 and thus its probability-payoff pairs 

are <1/2, 2>, <1/4, –4/2>, and <1/2n, 0>, for n>2. The standard expected value of Xn, E(Xn), is 

always well defined, given that truncated payoffs are bounded. 
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Finite Weak Expected Value Lemma (Feller 1971, chapter VII, Thm. 1 and Durrett 2005, 

Chapter 1, 5.5) . Option X has a finite weak expected value, v, if and only if (1) X has thin tails, 

and (2) the limit of E(Xn), as n goes to positive infinity, is v. 

 

The first condition requires that the limit of x multiplied by Pr(|X|>x) go to zero, as x goes 

to infinity. For example, for Pasadena, Pr(|X|>2) = 1/4 (since Pr(X=2)=1/2 and Pr(X=–4/2) = 1/4, 

and all other payoffs have an absolute value greater than 2), and 2 multiplied by Pr(|X|>2) is 2 

multiplied by 1/4, or 1/2.  

To determine the weak expected value on the basis of this lemma, for each payoff level n, 

one truncates the option X at level n, determines the strong expected value of this truncated 

variable, and then takes the limit as n goes to infinity. Although the Pasadena game has no 

standard expected value, it has a weak expected value of log(2). To see this, note that the 

absolute payoffs of the Pasadena have the form 2
n
/n, and thus condition (1) is equivalent to the 

requirement that (2
n
/n)Pr(|X|>2

n
/n) converge to zero, as n goes to infinity. For Pasadena, 

Pr(|X|>2
n
/n) = 1/2

n
, and thus (1) requires that (2

n
/n)(1/2

n
), or 1/n, converge to zero as n goes to 

infinity. Hence, condition (1) of the lemma is satisfied. To see that condition (2) also is met, note 

that E(Xn) = 1–1/2+1/3+…+ (–1)
n
 /n.

2
 Thus, the limit of E(Xn) is log(2) as n goes to infinity. 

Hence, condition (2) of the definition is met, and Pasadena has a weak expected value equal to 

log(2). It is worth noting that the lemma ensures that the weak expected value is based on the 

summation of probability-weighted payoffs in increasing order of the absolute value of the 

                                                 

2
 See, for example, http://en.wikipedia.org/wiki/Alternating_harmonic_series. 
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payoff. This is in contrast to Nover and Hájek (2004), who argue that no particular order of 

summation is privileged. 

If a risky option has a finite standard expected value, then it has a finite weak expected 

value, and both values coincide. This follows from the fact that the standard expected value is 

finite only if the sum of the probability-weighted payoffs is finite for both the positive, and the 

negative, payoffs. That in turn implies that (1) X has thin tails and (2) the sum of the probability-

weighted payoffs does not depend upon the order of summation (which ensures the sum in 

increasing order of the absolute value of the payoffs gives the correct answer).Thus, the concept 

of weak expected value is a strengthening of standard expected value. 

Easwaran tentatively proposes that Finite Strong Expectations be strengthened to the 

following principle: 

 

Finite Weak Expectations. The value of an option is its weak expected value, if it exists and is 

finite. 

 

As Easwaran notes, a player who plays a game a very large number of times at a price 

that is slightly higher (respectively: lower) than the weak expectation has a very high probability 

of ending up behind (respectively: ahead). Indeed, by repeating the game enough times, that 

probability can be made as close to 100% as one likes.  

Although Finite Weak Expectations is not uncontroversial,
3
 we find it compelling.

4
 In the 

                                                 

3
 For additional discussion of Easwaran’s approach, see Fine (2008), Sprenger and Heesen 

(2009), and Smith (2014). 
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remainder of the paper we shall strengthen it in various ways.  

 

3. Infinite Expectations  

In this section we extend Finite Weak Expectations to cover cases where there is infinite weak 

expected value. 

Consider the following option: 

 

Squared St. Petersburg–Pasadena 

Positive payoffs: < 1/2, 4>, <1/8, 2
6
>, <1/32, 2

10
>, …, <1/2

2n–1
, 2

4n–2
>, …  

Negative payoffs: <1/4, –2>, <1/16, –4>, <1/64, –64/6>, …, <1/2
2n

, –2
2n

/2n>, … 

 

Here, for a given probability, the positive payoffs are the squares of the St. Petersburg payoffs 

for those probabilities, and the negative payoffs, are the same as the payoffs of Pasadena for 

those probabilities. Both the positive and the negative parts have infinite totals. Hence, there is 

no standard expected value. Nevertheless, this option has infinite strong expected value, defined 

as follows: 

 

Infinite Strong Expected Value. Option X has infinitely positive (respectively: negative) strong 

                                                                                                                                                             

4
 Actually, only one of us (Vallentyne) finds Finite Weak Expectations compelling. The other 

(Lauwers) finds it compelling for one-stage lotteries but not for compound lotteries (e.g., 

involving sequential coin flips). We discuss the problems for multi-stage lotteries in Lauwers and 

Vallentyne (2015). 
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expected value if and only if, for each positive number, e, with probability 1, for all sufficiently 

large n, Ave(X,n)>e (resp. <–e). 

 

This is the same as the definition of finite strong expected value, except that it requires 

that Ave(X,n) become arbitrarily large in absolute value rather than arbitrarily close to some 

finite value. 

An application of the theorem of Derman and Robbins (1955) establishes that the above 

option has an infinite strong expected value, even though it has no standard expected value. 

 The crucial point here is that, although finite standard expected value and finite strong 

expected value always are the same, infinite strong expected value can exist when there is no 

standard expected value (but not vice-versa). 

 We believe that the following strengthening of Standard Expectations is plausible: 

 

Strong Expectations. The value of an option is its strong (finite or infinite) expected value, if it 

exists. 

 

 Indeed, we believe that a further strengthening is plausible. Consider: 

 

Weakly Infinite Pasadena 

Positive payoffs: <1/2, (2/1)1.01>, <1/8, (8/3)1.01>, <1/32, (32/5)1.01>, …,  

<1/2
2n–1

, (2
2n–1

)1.01/(2n–1)>, …  

Negative payoffs: <1/4, –4/2>, <1/16, –16/4>, <1/64, –64/6>, …, <1/2
2n

, –2
2n

/2n>, … 
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This is the same as Pasadena, except that the positive payoffs are multiplied by 1.01.  

Corollary 1 of Erickson (1973) establishes that the above option has no strong expected 

value. Showing this, however, would be complex, and we omit that demonstration.
5
 

 Although Weakly Infinite Pasadena has no strong expected value, it has infinite weak 

expected value, defined as follows: 

 

Infinite Weak Expected Value. Option X has positive (respectively: negative) infinite weak 

expected value if and only if, for each positive number, e, and each positive number, d, strictly 

between 0 and 1, for all sufficiently large n, the probability that Ave(X,n)> e (resp. < –e) >1–d. 

 

This is the same as the definition of finite weak expected value, except that it requires 

that Ave(X,n) become arbitrarily large in absolute value rather than arbitrarily close to some 

finite value. It is like the definition of infinite strong expected value, except that it requires that, 

for all sufficiently large sample sizes, the probability of the average being greater than any given 

value converges to 1 rather than that there be probability 1 that, for all sufficiently large sample 

sizes, the average is greater than any given value. Whenever the strong expected value (finite or 

infinite) exists, the weak expected value exists and has the same value. Weak expected value 

                                                 

5
 Roughly: For an option for which E(|X|) is infinite, the strong expected value is positively 

(respectively: negatively) infinite if and only if a certain measure, J– (respectively: J+) is finite. 

Given that Pasadena does not have an infinite strong expected value, both of these measures are 

infinite. Multiplying the positive payoffs by 1.01 leaves both measures infinite. Thus, Weakly 

Infinite Pasadena does not have infinite strong expected value either. 
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(finite or infinite), however, can exist without strong expected value existing. 

To see that the above option has infinite weak expected value, we can appeal to the 

following lemma: 

 

Infinite Weak Expected Value Lemma (Durrett 2005: Ch. 1, sec. 8). An option, X, has a 

positively (respectively: negative) infinite weak expected value if: (1) X has thin tails (i.e., x 

multiplied by Pr(|X|>x) converges to zero as x goes to positive infinity), and (2) the limit of E(Xn) 

is positively (resp: negatively) infinite. 

 

This lemma is similar to the corresponding one for finite weak expected value, except (1) it 

requires that the limit of E(Xn) be infinite, and (2) it supplies only a sufficient condition for weak 

expected value.
6
    

The above option has thin tails and the limit of E(Xn) is infinite. Thus, it has infinite weak 

expected value. 

 We believe that Strong Expectations can plausibly be strengthened to: 

 

Weak Expectations. The value of an option is its weak (finite or infinite) expected value, if it 

exists. 

 

 Of course, those who reject Finite Weak Expectations will also reject the infinite version, 

                                                 

6
 An important additional sufficient condition for the existence of infinite weak expected value is 

given by Theorem 2 of Baum (1963). 
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as will those who reject infinite value even for standard expected value. We believe, nonetheless, 

that Weak Expectations is plausible and shall assume it below. 

 Not all options, of course, have a (finite or infinite) weak expected value. The following 

is an example of one that does not. 

 

Symmetric St. Petersburg (SP*) 

Positive payoffs: < 1/4, 4>, < 1/8, 8>, …, <1/2
n+1

, 2
n+1

>, …  

Negative payoffs: < 1/4, –4>, < 1/8, –8>, …, <1/2
n+1

, –2
n+1

>, … 

 

This is like the St. Petersburg, except that it has negative payoffs defined to be symmetric with 

the positive payoffs. 

 The Finite Weak Expected Value Lemma above establishes that this does not have finite 

weak expected value (because it does not have thin tails). Moreover, for each positive number, v, 

the probability of winning v is the same as the probability of losing v. It follows that, for any 

positive n and k, the probability that Ave(SP*,2
n
) is larger than k is equal to the probability that 

Ave(SP*,2
n
) is smaller than –k. Hence, the option SP* does not have an infinitely positive, or 

infinitely negative, weak expected value.  

Weak Expectations makes comparative cardinal assessments when both options have a 

weak expected value, with at least one value being finite. If they both have finite weak expected 

value, say m and n respectively, then (1) they are equally valuable if m=n, and (2) the option with 

value m is m–n units more valuable than the other (where being –c units more valuable is being c 

units less valuable). If one option has positively infinite value, then it is infinitely more valuable 

than the other. If one option has negatively infinite value, then it is infinitely less valuable than 
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the other. If both values are infinite, however, no comparative assessment follows. One option 

may be more valuable, less valuable, equally valuable, or incomparable with the other option 

We shall now strengthen the principle to cover certain cases where at least one option has 

no weak expected value.  

 

4. Indeterminate Expectations 

The weak expected value of an option has finite value k if and only if the probability that its 

average is arbitrarily close to k converges to one, as the sample size goes to infinity. We shall 

now generalize this notion to include interval assessments of weak expected value (e.g., a value 

of between 2 and 6 units). This will enable comparative cardinal assessments in some cases 

where at least one of the options lacks a (precise) weak expected value. 

To see the need for strengthening the weak expectations principle, consider the following 

option, O, which is the same as Pasadena except that the signs of the payoffs are adjusted to 

ensure that, for each n, E(On) (the expected value of the n-truncation of O) is inclusively between 

0 and 1. Thus, for example: 

 

Oscillating Weak Expected Value 

Probability: 1/2 1/4 1/8 1/16
 

1/32 1/64 1/128 1/256 …  

O  2 –4/2 –8/3 16/4 32/5 64/6 128/7 –256/8 … 

  

Option O has no (finite or infinite) weak expected value. Although O has thin tails, the 

sequence of the truncated expected values, E(On), oscillates, as n goes to infinity, between 0 and 

1. (The above specification of the signs of the payoffs ensures exactly this.) Thus, Weak 
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Expectations is silent. Nonetheless, it is plausible, we claim, that O has a value of at least 0 and 

at most 1. We shall suggest that it has an “interval value” of [0,1]. 

In order to introduce the concept of interval value, we need to first introduce the 

following two standard mathematical concepts. The greatest lower bound of a set of numbers is 

(a) the largest (finite) real number that is a lower bound for (i.e., smaller or equal to) all members 

of the set, if a lower bound exists, and (b) negative infinity, if there are no lower bounds. For 

example, 2 is the greatest lower bound for {2,3,4, …, n, …},  and –∞ is the greatest lower bound 

for {…, –n, …, –4, –3, –2}. The least upper bound of a set of numbers is (a) the smallest (finite) 

real number that is an upper bound for (i.e., greater or equal to) all members of the set, if there is 

an upper bound, and (b) positive infinity, if there are no upper bounds.  For example, –2 is the 

least upper bound for {…, –n, …, –4, –3, –2}, and ∞ is the least upper bound for {2,3,4, …, n, 

…}. 

We can now define the weak expected interval value of an option: 

 

Weak Expected Interval Value. The weak expected interval value of option X is the closed 

interval [x1,x2], where: (1) x1 is the greatest lower bound on the value of k for which lim 

pr(Ave(X,n)≥k) = 1, and (2) x2 is the smallest upper bound on the value of k for which lim 

pr(Ave(X,n)≤k) = 1. 

 

All options have a weak expected interval value. An option with finite weak expected 

value of k has an interval value of [k,k], and an option with infinite weak expected value has an 

interval value of [∞,∞]. An option with a completely indeterminate weak expected value (e.g., 

Symmetric St. Petersburg, from the previous section) has an interval value of [–∞,∞]. Option O, 
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above, has an interval value of [0,1]. It is thus worth more than any negative value and worth no 

more than 1 unit of value. 

This provides the basis for the evaluation of options on the basis of the following 

plausible principle: 

 

Ordinal Interval Weak Expectations. Option, X, with weak expected interval value [x1,x2], is at 

least as valuable as option, Y, with weak expected interval value [y1,y2], if x1≥y2.
7
 

 

Here we stipulate, as is standard for the extended reals, that (1) for any finite number, n, ∞ > n > 

–∞, and (2) neither ∞ ≥ ∞, nor –∞ ≥ –∞. 

Thus, if X’s greatest lower bound is at least as great as Y’s least upper bound, then X is at 

least as valuable as Y. For example, X with value [3,4] is at least as valuable as Y with value 

[2,3], but Y is not at least as valuable as X (since it is not the case that 2 ≥ 4). Of course, for some 

options, Ordinal Interval Weak Expectations is silent. For example, it makes no comparative 

assessment of W with value [3,10] against Z with value [4,6]. 

This principle can be plausibly strengthened to say how much more valuable one option is 

than another. Consider then the following principles where it is stipulated that (1) ∞+n =∞, for n 

finite or ∞, (2) –∞+n = –∞, for n finite or –∞, and (3) ∞+–∞ is not defined: 

 

Cardinal Interval Weak Expectations. For option, X, with weak expected interval value [x1,x2], 

and option, Y, with weak expected interval value [y1,y2], X is not less than (x1–y2) units, and not 

                                                 

7
 See Fishburn (1985) for more on interval orders. 
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more than (x2–y1) units, more valuable than Y. 

 

This principle holds, for example, that, for X with weak expected interval value [4,5] and 

Y with weak expected interval value [2,3], X is not less than 1 unit more valuable than Y and not 

more than 3 units more valuable. Moreover, for Z with weak expected interval value of [2,6], X 

is at least –2 units more valuable (i.e., 2 units less valuable) than Z and not more than 3 units 

more valuable. That is, X is not determinately more valuable than Z, but there are limits on how 

much worse (–2) and how much better (3) it is. 

 It is important to keep in mind here that Cardinal Interval Weak Expectation sets lower 

and upper bounds on the difference in value between two options, but it does not claim that these 

bounds are the greatest lower bounds or the least upper bounds. Thus, for example, the claim 

that X is at least –2 units more valuable and at most 3 units more valuable than Z is compatible 

with the claim that X is exactly 1 unit more valuable than Z (but not with the claim that it is 

exactly 4 units more valuable). Indeed, many of the relatively indeterminate assessment of 

Cardinal Interval Weak Expectations will be strengthened to more precise assessment by the 

principles of the next section. 

With respect to options with a weak expected value, Cardinal Interval Weak Expectation 

has the same implications as Weak Expectations. An option has a weak expected value if and 

only if its weak expected value interval has the form [k,k], for some k (finite or infinite). For any 

two such options, say with intervals [k,k] and [l,l] the first is k–l to k–l units at least as valuable 

as the second, which is to say k–l units more valuable, as required. 

Cardinal Interval Weak Expectations makes, however, many comparative judgments that 

Weak Expectations does not. For example, as noted above, it judges X, with weak expected 
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interval value [4,5], to be at least 1 unit, and not more than 3 units, more valuable than Y, with 

weak expected interval value [2,3], even though neither option has a weak expected value. 

In the following sections, we examine some principles for addressing two kinds of cases 

for which Cardinal Interval Weak Expectations makes no non-empty comparative assessment. 

One kind of case is where the subtractions involved are not well defined. This occurs where the 

interval values are [x1,x2] and [y1,y2], where both x1 and y2, or both y1 and x2, are positively 

infinite, or both negatively infinite (e.g., [–1,∞] compared with [∞,∞], or [–∞,1] compared with 

[–∞,–∞]. The second kind of case is where the assessment is radically indeterminate in the sense 

that the assessment is that one option is at least –∞, and at most ∞, units more valuable than the 

other. This occurs where (1) both options have ∞ as their greatest interval value but not as their 

lowest interval value, or (2) both options have –∞ as their lowest interval value but not as their 

highest interval value (e.g., [2,∞] compared with [1,∞]). As we shall see, some additional 

principles make comparative assessments possible in some of these cases.  

 

5. An Interlude on State Spaces 

The weak, strong, and standard expected values of an option are determined by its payoff 

distribution, {<p1,v1>, <p2,v2>, …, <pk,vk>, …}, where pk is the probability of receiving a payoff 

of vk. Options, however, have more structure than this, and the principles that we introduce 

below (unlike those introduced above) depend on this structure. We shall now make that 

structure explicit. 

Options are defined over state spaces. A state space is a set of basic states, along with an 

associated probability function over certain specified subsets of those states (the events). 

Because we restrict our attention to countable state spaces (i.e., with countably-many basic 
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states) and countably additive probability functions (i.e., the probability of a union of a countable 

number of basic states is the sum of their individual probabilities), a state space can be 

represented by a countable set of couples {<s1,p1>, <s2,p2>, …, <si,pi>, …}, where si is a basic 

state, pi is the positive probability with which si occurs, and the pi sum to one. (Throughout, we 

assume that the probabilities of states are independent of the options chosen.) 

An option can be represented as a function that assigns an outcome to each basic state (of 

its associated state space). As is standard, we assume throughout that options defined on the 

same state-space are equally valuable, if, for each basic state, they have equally valuable 

outcomes (even if the outcomes are distinct).  Thus, we can represent options as real-valued 

functions that assign to each basic state the value of its outcome for the state, expressed in units 

of the relevant value (here left open). An option can thus be represented by a countable set of 

triples {<s1,p1,v1>, <s2,p2,v2>, …, <si,pi,vi>, …}, with si and pi as above, and with vi the value (or 

payoff) of the outcome of the option under state si. 

 Above, in discussing weak and strong expected value, we simplified this by combining 

states with the same payoff (and adding together the associated probabilities). The remaining 

principles, however, require the fuller state-space specification. 

 Two options defined on different state spaces can always be represented on a common 

state-space. If X is defined on states s1, s2, … sn, …, and Y is defined on states r1, r2,  …, rn, then 

their common space is simply the set {s1&r1, s2&r1, …, sn&r1, …, s1&r2, s2&r2, … sn&r2, …, 

s1&rn, s2&rn, …, sn&rn, …}, where pr(sn&rm) = pr(sn)pr(rm|sn). If the states are interdependent 

(e.g., rn=~si), then some of these combinations are impossible, have probability zero, and 

ignored/eliminated. 

We shall now address some additional principles for assessing options defined on the 
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same state space.  

 

6. Relative Expectations  

If two options each have weak expectations, with at least one of them finite in value, then Weak 

Expectations determines how much more valuable one is compared with the other. If the two 

options do not have any weak expectation but each has a weak expected interval value, then 

Cardinal Interval Weak Expectations will typically give a non-trivial assessment of some lower 

and upper limits on how much more valuable one option is compared with the other (e.g., at least 

2 and at most 4 units more valuable).  

As indicated above, however, there are two cases where this is not so. One is where both 

options have positively infinite, or both have negatively infinite, weak expected value. In this 

case, Cardinal Interval Weak Expectations is silent, for example, because comparing [∞, ∞] with 

[∞, ∞] involves ∞–∞ and that is undefined. The second kind of case is where both options have a 

weak expected interval values of the form [n,∞], or both have the form [–∞,n], where n can be 

finite or infinite and need not be the same for the two options. In this case, Cardinal Interval 

Weak Expectations judges each option to be –∞ to ∞ units more valuable than the other. That is 

true but uninformative. We shall now add a principle, appealing to the state-space structure, that 

covers some (but not all) of these cases.  

 A very plausible principle, which we shall strengthen below, is: 

 

Strong Dominance. If, (1) X and Y are options defined on the same state space, (2) for each 

basic state, X has a payoff that is at least as great as that of Y, and (3) for some basic states, X has 

a greater payoff than Y, then X is more valuable than Y. 
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 Strong Dominance is highly plausible but very weak. Consider SP (St. Petersburg) and 

SP*: 

 

   Relative Expectations 

Probability: 1/2 1/4 1/8 1/16 1/32 … 1/2
n
 … 

State:  s1 s2 s3 s4 s5  … sn  … 

SP  2 4 8 16 32 … 2
n 

… 

SP*  1.8 5 9 17 33  … 2
n
+1 … 

SP*–SP –.2 1 1 1 1  … 1 … 

 

For each state other than s1, SP* has payoff that is one unit greater than SP, but for s1 SP* has a 

payoff that is .2 lower. Thus, there is no strong dominance here. Nonetheless, it is extremely 

plausible that SP* is more valuable than SP.  

The following principle from Colyvan (2008) captures this assessment, where X–Y is an 

option that, for each state, has an outcome whose value is equal to the value of X’s outcome 

minus the value of Y’s outcome. We assume that there is always at least one such outcome, and 

that, if there is more than one, then they are all equally valuable (since, for each basic state, their 

outcomes have the same value).   

 

Relative Expectations (Sufficiency Version). If X–Y has a standard expected value that is 
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nonnegative, then X is at least as valuable as Y.
8
  

 

SP and SP* each have infinite standard expected value. Nonetheless, the standard expectation of 

(SP*–SP) is positive (.4 = –.1 + .5 =1/2( –.2) + ¼(1) + 1/8(1) …). Thus, Relative Expectations 

rightly says that SP* is more valuable than SP. 

 Colyvan (2008) endorses a stronger version of this principle, which also holds that X is at 

least as valuable as Y only if the standard expected value of X–Y exists and is non-negative. We 

believe that this is too strong. We believe that the relative value of two options can be assessed in 

many cases where this condition fails. We show this below by showing that stronger versions of 

the principles are plausible. 

 First (as recognized by Colyvan and Hájek 2015), it is plausible to endorse a cardinal 

version of Relative Expectations: 

 

Cardinal Relative Expectations. If the standard expected value of X–Y is n (which can be 

infinite), then X is n units more valuable than Y. 

 

This is just like the previous principle, except that it specifies how much more valuable on option 

is than the other. It says, for example that SP* is .4 units more valuable than SP. 

 It may seem confused to hold that one infinitely valuable option is n units more valuable 

than another infinitely valuable option, but it is not. For finitely valuable options, X and Y, if X is 

                                                 

8
 For a closely related principle in value theory (but without probabilities), see Lauwers and 

Vallentyne (2004). 
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n units more valuable than Y, then the value of X is n units higher than the value of Y. This 

relationship, however, does not hold for infinitely valuable options. To say that an option is 

infinitely valuable is not to assign it a specific value. It is merely to say that it is more valuable 

than any finitely valuable option. Infinitely valuable options need not be equally valuable (and 

usually are not). Often they are incomparable, but sometimes one is more valuable another (e.g., 

when one dominates the other). Moreover, it is sometimes possible to say how much more 

valuable one infinitely valuable option is compared with another. To say that X is n units more 

valuable than Y is just to say that X is equally valuable with the option obtained by increasing, 

for each state, Y’s payoffs by n units. For example, above, SP* is .4 units more valuable than SP, 

in the sense that it would be worth paying .4 units to exchange SP for SP*. There is no claim that 

adding .4 to infinity is somehow greater than infinity. Once that is understood, there is no 

incoherence.  

To see the need for the second strengthening, consider: 

 

Relative Weak Expectations  

Probability: 1/2 1/4 1/8 1/16 … 1/2
2n–1

   1/2
2n 

… 

State:  s1 s2 s3 s4 …  s2n–1   s2n …  

SP  2 4 8 16 …  2
2n–1

   2
2n

 … 

Q  2+2 4–4/2 8+8/3 16–16/4 … 2
2n–1

+(2
2n–1

)/(2n–1) 2
2n

–(2
2n

)/2n  … 

Q–SP  2 –4/2 8/3 –16/4 … (2
2n–1

)/(2n–1)  –(2
2n

)/2n …   

 

 In this example, for Q–SP (which is just Pasadena), the sum of the probability-weighted 

payoffs is infinite for both the positive payoffs and for the negative payoffs. Thus, Q–SP has no 
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standard expected value, and Cardinal Relative Expectations is silent. Note, however, that Q–SP 

has a weak expected value of log(2). We believe that that is sufficient to evaluate Q as being 

log(2) units more valuable than SP.  

More generally, we believe that the following principle is plausible: 

 

Cardinal Relative Weak Expectations. If the weak expected value of X–Y is n, then X is n units 

more valuable than Y. 

 

This principle replaces the appeal to the standard expected value of X–Y with an appeal to 

the weak expected value of X–Y. It rightly assesses Q as log(2) units more valuable than SP. It 

will often give more determinate assessments of the comparative value of two options than does 

Cardinal Interval Weak Expectations (e.g., that X is n units more valuable, rather than being not 

less than n-1 units more valuable and not more than n+1 units more valuable). This is not a 

conflict. It is simply a case of being more determinate. 

 In the above example, the two options each have infinite weak expected value. A similar 

example could be given where neither option has a weak expected value but their difference does 

(e.g., the same difference as Q–SP above). 

To see the need for one final strengthening of the relative expectations principle, consider 

the following example:  

 

Oscillating Differences 

Probability: 1/2 1/4 1/8 1/16
 

1/32 1/64 1/128 1/256  … 1/2
n
 …  

State:  s1 s2 s3 s4 s5  s6 s7  s8    … sn … 
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SP  2 4 8 16 32 64 128 256  … 2
n
 … 

U  2+a1 4+a2 8+a3 16+a4 32+a5 64+a6 128+a7 256+a8  …2
n
+an  …  

U–SP  2 –2
2
/2 –2

3
/3 2

4
/4 2

5
/5 2

6
/6 2

7
/7 –2

8
/8  … an … 

 

Here (1) SP is St. Petersburg, (2) U is defined to have the same payoffs as SP but 

increased by an for state sn, and (3) the ai are the same as the Pasadena payoffs for state si, except 

that the signs are adjusted to ensure that E([U–SP]n) is inclusively between 0 and 1. This ensures 

that E([U–SP]n) oscillates between 0 and 1, as n goes to infinity. (The set up here is similar to 

that of Oscillating Weak Expected Value in the section on indeterminate value.) 

Here, SP and U each have infinite weak expected value, but U–SP has no weak expected 

value, given that E([U–SP]n) does not have a limit, as n goes to infinity. Thus, Cardinal Relative 

Weak Expectations is silent. Nonetheless, it is plausible, we claim, that U is 0 to 1 units more 

valuable than SP. Indeed, note that, although U–SP has no weak expected value, it does have a 

weak expected interval value of [0, 1], where (as defined above) this means that 0 is the greatest 

lower bound on the value of k for which lim pr(Ave(X,n)≥k) = 1, and (2) 1 is the smallest upper 

bound on the value of k for which lim pr(Ave(X,n)≤k) = 1. 

Consider, then, the following principle, where to say that X is m to n units more valuable 

than Y is to say that (1) m is the greatest lower bound on the value by which the value of X 

exceeds that of Y, and (2) n is the least upper bound on the value by which the value of X exceeds 

that of Y: 

 

Cardinal Relative Interval Weak Expectations. If X–Y has a weak expected interval value of 

[m, n], then X is m to n units more valuable than Y. 
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 As indicated above, when m is negative, to say that X is m units more valuable than Y is 

to say that X is at least as valuable as the option obtained by decreasing payoffs by |m| units. 

Cardinal Relative Interval Weak Expectations is equivalent to Cardinal Relative Weak 

Expectations in the special case where X–Y has a weak expected interval value [k, k], for k finite 

or infinite. Moreover, this principle entails the conjunction of Cardinal Interval Weak 

Expectations with Cardinal Relative Weak Expectations.  It entails, that is, that, if X and Y each 

have a weak expected interval values of [x1,x2] and [y1,y2], then X is not less than x1-y2 units more 

valuable than Y, and not more than x2-y1 units  more valuable (proof in footnote).
9
  

Cardinal Relative Interval Weak Expectations determines when one option is m to n units 

more valuable than another. It does not, however, assess the non-relative value of any option. It 

does not entail that Pasadena, for example, has value log(2). It thus does not entail Weak 

                                                 

9
 Proof: Suppose that X and Y have interval values [x1,x2] and [y1,y2] respectively. It follows that 

the probability that Ave(X,n)>x1 converges to one as n goes to infinity and that the probability 

that Ave(–Y,n)>–y2 converges to one as n goes to infinity. Consider a sufficiently large n such 

that both events have a probability of at least 1–e/2, for some positive e less than 1. It follows 

from Bonferroni’s inequality that both events occur simultaneously with probability 1–e. Hence, 

for this large n, the probability that [Ave(X,n)>x1 and Ave(–Y,n)>–y2] is greater than 1–e. It 

follows that the probability that Ave(X–Y,n)>x1–y2 is greater than 1–e. Given that this argument 

holds for every strictly positive e less than one, it follows that the lower bound of the weak 

expected value of X–Y is not less than x1–y2.  In a similar way, one can prove that the upper 

bound is not more than x2–y1. QED.  
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Expectations (which assigns each option its weak expected value, if it has one). If, however, we 

add the following uncontroversial principle, then Weak Expectations will follow: 

 

Zero Value for Zero Option. An option that has a payoff of zero for all basic states has value 0. 

 

Given this principle, Cardinal Relative Interval Weak Expectations entails Weak 

Expectations, since if X has a weak expected value of n, then X is n units more valuable than the 

zero option. Given that the latter has value 0, the former has value n, as required. 

Cardinal Relative Interval Weak Expectations is, we think, highly plausible. We shall 

now consider two extensions and argue that they should be rejected.  

 

7. Rejecting Basic-State Isomorphism and Stochastic Dominance 

We shall here briefly consider and reject (1) a principle holding that isomorphic options are 

equally valuable, and (2) a principle holding that, if one option stochastically dominates another, 

then it is more valuable. 

 

7.1 Rejecting Basic-State Isomorphism 

To see that an additional principle may be needed, consider the following version of an example 

provided in correspondence by James Joyce, as noted in Colyvan and Hájek (2015). There are 

two St. Petersburg options, SP1 and SP2. Their payoffs are both based on the number of flips it 

takes for given coin to first come up heads. Let this be n. The only difference is that a second 

coin is also flipped, and if H occurs SP1 gets the payoff of 2
n+1

 and SP2 gets 2, and if T occurs 

the payoffs are switched. There is also a third option, SP1+, which has the same payoff as SP1, if 
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the second coin comes up T, and has a payoff  one greater than SP1, if the second coin comes up 

H. This can be represented as follows, where (n,H) and (n,T) are the states where the first heads 

occurs on the n-th flip of the first coin and the second coin comes up H, or respectively, T. 

 

Three St. Petersburg-like Options 

Probability: 1/4 1/4 1/8 1/8 1/16 1/16 … 1/2
n+1 

1/2
n+1

 … 

State:  (1,H) (1,T) (2,H) (2,T) (3,H) (3,T) … (n,H) (n,T) … 

SP1  4 2 8 2 16 2 … 2
n+1 

2 … 

SP2  2 4 2 8 2 16 … 2 2
n+1 

… 

SP1
+
  4+1 2 8+1 2 16+1 2 … 2

n+1
+1

 
2 … 

SP1–SP2 2 –2 6 –6 14 –14 … 2
n+1

–2
 
–2

n+1
+2 … 

SP1
+
–SP1 1 0 1 0 1 0 … 1 0 …  

SP1
+
–SP2 3 –2 7 –6 15 –14 … 2

n+1
–1

 
2–(2

n+1
) … 

 

SP1
+
–SP1 has a standard (and hence weak) expected value of 1/2 (= 1/4 + 1/8 + 1/16 ...). 

Hence, SP1
+
 is 1/2 a unit more valuable than SP1. By contrast, SP1

+
–SP2 has interval weak 

expectation [-∞,∞], and thus appeal to relative weak expectations provides no basis for assessing 

SP1+ compared with SP2. In response to this example, Colyvan and Hájek (2015: 15) write: “So, 

it looks like either the states have to be individuated by something more than their probabilities, 

or we have to swallow the above paradoxical results about the RET’s [Relative Expectation 

Theory’s] verdicts about the comparisons between A [=SP1
+
], B [=SP2] and B* [=SP1] [i.e., that 

SP1
+
 is more valuable than SP1 but not more valuable than SP2].”  

A natural thought is to say that SP1 and SP2 are equally valuable because they have the 
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same payoff structure. The payoff for X (respectively: Y) under (n,T) is the same as that for Y 

(respectively: X) under the equally probable (n,H). Thus, if SP1+ is 1/2 a unit more valuable than 

SP1, then it is also 1/2 a unit more valuable than SP2. 

More exactly, SP1 and SP2 may seem equally valuable, given that they are basic-state 

isomorphic in the following sense: there is a way of pairing up the SP1’s basic states with SP2’s 

basic states (i.e., a 1-to-1 mapping from the former onto the latter), such that (1) the probability 

of each basic state is the same as its partner’s probability, and (2) SP1’s payoff under a basic 

state is the same as SP2’s payoff under that basic state’s partner. In the above example, SP1 and 

SP2 are basic-state isomorphic. The only difference between the two is that SP1 has payoffs of 

2
n+1 

for the H-states and a payoff of 2 for the T-states whereas the opposite is true for SP2. For 

example, the payoff for SP1 under (1,H) is the same as the payoff for SP2 under (1,T), and (1,H) 

and (1,T) have the same probability, and so on. 

Given that SP1 and SP2 are basic-state isomorphic, the following principle entails that 

they are equally valuable: 

 

Basic-State Isomorphism. If two options are basic-state isomorphic, then they are equally 

valuable. 

 

This is a plausible, but redundant, principle when both options have finite weak expected 

value. It is not, however, a redundant principle when both options lack finite weak expected 

value. In the example above, SP1–SP2 has interval weak expected value [–∞,∞], and thus 

Cardinal Relative Interval Weak Expectations is silent. Nonetheless, it may seem plausible that 
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SP1 and SP2 are equally valuable. Basic-State Isomorphism captures that intuition.
10

 

 Basic-State Isomorphism is, however, mistaken. A brilliant example from Seidenfeld et 

al. (2009) shows this. Note that the payoff for SP1 above does not depend on n, if the second 

coin-flip comes up T. Thus, it can be represented as: 

 

Probability: 1/2 1/4 1/8 1/16 … 1/2
n+1  

… 

State:  T (1,H) (2,H) (3,H) … (n,H)  … 

SP1  2 4 8 16 … 2
n+1  

… 

 

Likewise, the payoff for SP2 above does not depend on n, if the second coin-flip comes 

up H. Thus, it can be represented as: 

 

Probability: 1/2 1/4 1/8 1/16 … 1/2
n+1  

… 

State:  H (1,T) (2,T) (3,T) … (n,T)  … 

SP2  2 4 8 16 … 2
n+1  

… 

 

 If the states listed for SP1 and SP2 are their basic states, then SP1 and SP2 are basic-state 

isomorphic and thus judged equally valuable by the above principle. This may not problematic, 

but the next implication is. 

                                                 

10
 Easwaran (2014b) develops a very elegant theory of expected utility by appealing to 

something like Basic-State Isomorphism (or what he calls “measure-preserving 

correspondences” between state spaces). 
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Consider now a third St. Petersburg option, W, defined by the same coin flips, where if 

the first heads of the first coin occurs on the n-th flip, its payoff is 2
n
. Unlike, SP1 and SP2, the 

outcome of the flip of the second coin is irrelevant to its payoffs. This can be represented as 

follows: 

 

Probability: 1/2 1/4 1/8 1/16 … 1/2
n 

… 

State:  (1) (2) (3) (4)   … (n) … 

W  2 4 8 16 … 2
n 

… 

 

 Again, if these are W’s basic states, then W is basic-state isomorphic with SP1 and with 

SP2.  W’s (1) has the same probability as SP1’s (H), etc. The isomorphism principle then entails 

that W is equally valuable with SP1 and with SP2. This, however, is problematic, as becomes 

obvious when they are represented in the same state-space (recall that all three depend on the 

flips of the same two coins): 

 

Three More St. Petersburg Options 

Probability: 1/4 1/4 1/8 1/8 1/16 1/16 … 1/2
n+1  

1/2
n+1

 … 

State:  (1,H) (1,T) (2,H) (2,T) (3,H) (3,T) … (n,H)  (n,T) … 

W  2 2 4 4 8 8 ... 2
n
  2

n 
… 

SP1  4 2 8 2 16 2 … 2
n+1  

2 … 

SP2  2 4 2 8 2 16 … 2  2
n+1 

… 

(SP1+SP2)/2 3 3 5 5 9 9 ... 2
n
+1  2

n
+1 ...  
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Here, we can see that (SP1+SP2)/2 state-dominates W in the strong sense that its payoff 

is greater than that of W in every single basic state (in their shared state space). This is not 

possible if W is equally valuable with both SP1 and SP2. So, the above isomorphism principle 

must be rejected.
11

 

 Above W appears not to be basic-state isomorphic with SP1 (and SP2). It has a payoff of 

2 in only two of the listed states, whereas SP1 has a payoff 2 in infinitely many listed states. 

This, however, is deceptive. The above display shows irrelevant distinctions. For example, for 

W, the distinction between the H and T states is irrelevant. Its payoffs are fully determined by 

the value of n. Likewise, for SP1, for the T states, the distinction among the different n states is 

irrelevant. Its payoff is always 2 for a T state. Once, these irrelevant distinctions are removed, the 

payoff structure is the same. 

We suspect that some kind of isomorphism principle is valid, and that it will judge SP1 

and SP2 (but not W) equally valuable. We believe, however, that it will involve a deeper account 

of what an option’s basic states are (e.g., by appeal to its underlying tree structure) and a more 

restricted version of isomorphism (e.g., applying only when the tree/state space is the same for 

both options). That, however, is a project for another paper. The above is sufficient to show that 

                                                 

11
 We are thus agreeing with Seidenfeld et al. (2009) and Smith (2014) in rejecting what Smith 

(465) calls “the principle of compositionality”: “the value which a rational agent places [or at 

least should place] on a gamble is [solely] a function of the values which she places on the 

possible outcomes of the gamble, together with the probabilities assigned to those outcomes by 

the gamble.” W and SP1 assign the same probabilities to the same payoffs but are not equally 

valuable.  
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the above unsophisticated isomorphism principle must be rejected. 

 

7.2 Rejecting Stochastic Dominance  

Let us now consider a principle of stochastic dominance (defined below). To see the apparent 

need for such a principle, consider the following simplified version of an example from Peterson 

(2011), where SP1 is defined as above, and SP3 is defined below. 

 

    Stochastic Dominance 

Probability: 1/4 1/4 1/8 1/8 1/16 1/16 … 1/2
n+1  

1/2
n+1

 … 

State:  (1,H) (1,T) (2,H) (2,T) (3,H) (3,T) … (n,H)  (n,T) … 

SP1  4 2 8 2 16 2 … 2
n+1  

2 … 

SP3                  0          2          0          4          0          8          …        0           2
n              

… 

 

Here SP1 stochastically dominates SP3 in the sense that its distribution can be obtained from that 

of SP3 by shifting probability from lower payoffs to higher payoffs (e.g., the 1/2 probability of 0 

in SP3 is shifted upwards as follows: 1/4 to 2, 1/8 to 4, ….). It seems plausible that a 

stochastically dominating option is more valuable than the option it dominates. This is always 

true when both options have finite weak expectations. Colyvan and Hájek (2015: 14) note that 

relative (standard) expectation theory is strangely silent about cases of stochastic dominance. 

The stronger Cardinal Relative Interval Weak Expectations is also silent, since SP1–SP3 has 

value [–∞,∞].   

 It is therefore tempting to endorse: 
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Stochastic Dominance. If one option stochastically dominates another, then it is more valuable 

than the other. 

  

This principle, however, must be rejected. To see this consider, the following example, 

where SP1 and SP2 are as above, and W+ is the same as W above, except that its payoff for 

(1,H) and (1,T) is increased by .1: 

 

Stochastic Dominance Rejected 

Probability: 1/4 1/4 1/8 1/8 1/16 1/16 … 1/2
n+1  

1/2
n+1

 … 

State:  (1,H) (1,T) (2,H) (2,T) (3,H) (3,T) … (n,H)  (n,T) … 

W+                  2.1       2.1       4          4          8          8          … 2
n  

2
n
 ... 

SP1  4 2 8 2 16 2 … 2
n+1  

2 … 

SP2  2  4 2 8 2 16 … 2  2
n 

… 

(SP1+SP2)/2 3 3 5 5 9 9 ... 2
n+1

  2
n+1

 ...  

 

W+ stochastically dominates SP1 and SP2 (since it shifts the .5 probability from 2 to 2.1). 

Stochastic Dominance then entails that W+ is more valuable than SP1 and more valuable than 

SP2. This, however, is problematic, given that (SP1+SP2)/2 has a higher payoff than W+ in 

every single state. If W+ is more valuable than SP1 and more valuable than SP2, then it can’t be 

case that (SP1+SP2)/2  is more valuable than W+. Thus, Stochastic Dominance must be rejected.  

Stochastic dominance is based solely on the probabilities of payoffs and thus lacks 

relevant (state space) information. This does not cause a problem where both options have finite 

weak expectations. It does, however, have unacceptable implications when neither has finite 
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weak expectations. 

 

8. Conclusion 

We have limited our attention throughout to state spaces with countably-many basic states and 

countably additive probability functions (i.e., the probability of a union of a countable number of 

basic states is the sum of their individual probabilities). We have further limited our attention to 

cases where probabilities and payoffs are fully defined finite standard numbers. Things are 

significantly more complex when these restrictions are dropped. 

We have developed, with motivation but not compelling argument, several principles for 

the evaluation of options that have no finite standard expected value. The case arises when the 

sum of the probability-weighted values of an option is either ill defined (because the sum 

depends on the order in which the terms are added together) or infinite. Standard decision theory 

is silent about the evaluation of such options. Our project has been to extend the domain of 

evaluation. 

First, we endorsed the proposal of Easwaran (2008) to evaluate options on the basis of 

their finite weak expected value, if they have one. We then extended that to include infinite weak 

expected value. 

Second, we extended the relevant notion of weak expected value to interval value, where 

this is defined as the closed interval [x1,x2] such that: (1) x1 is the greatest lower bound on the 

value of k for which lim pr(Ave(X,n)≥k) = 1, and (2) x2 is the smallest upper bound on the value 

of k for which lim pr(Ave(X,n)≤k) = 1. Many options have an interval value (e.g., [1,3]) even 

though they have no weak expected value. An option with an interval value of [4,6] is more 

valuable than an option with interval value [1,3]. Indeed it is 1 to 5 units more valuable. 
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Third, for options defined on the same state space, we endorsed the proposal of Colyvan 

(2008) to evaluate an option, X, as at least as valuable as an option Y, if the standard expected 

value of X–Y exists and is non-negative (where X–Y is defined over basic states) . We then 

extended that principle (1) to be a cardinal principle that states how many more units more 

valuable X is, (2) to base the evaluation on weak (rather than standard) expected value, and (3) to 

apply in certain cases where X–Y has no weak expected value but has an interval value. When 

complemented with the uncontroversial Zero Value for Zero Option, this entails the Cardinal 

Interval Weak Expectations (that options with interval weak expectations have that value). 

We also considered two seemingly plausible principles that make no appeal to weak 

expectations: Basic-State Isomorphism and Stochastic Dominance. Both were found to have 

unacceptable implications. We suspect that a weaker version of Basic-State Isomorphism may be 

plausible, but we have left that exploration for another occasion. 

In closing, we shall briefly mention three other principles that we have not discussed. 

Gwiazda (2014) has proposed evaluating all options on the basis of the limit, as n goes to 

positive infinity, of the standard expected value of (Xn), where Xn truncates X to zero all payoffs 

with absolute value greater than n. This is clearly correct, where X has thin tails, and thus a weak 

expected value, but, as Easwaran (2014a) notes, it seems suspect in most other cases. Easwaran 

proposes, more cautiously, appealing to this value in the case where the limit does not change 

when a constant is subtracted (or added) to all payoffs (i.e., when changing zero-point for value 

does not change the limit). As Easwaran notes, however, one might question why the summation 

of the probability weighted values is done symmetrically from the zero point for payoffs. To this, 

we add that one might also question why the summation is done on the basis payoff intervals 

rather than arbitrary sets of payoff values. Finally, Bartha (2015) has proposed Relative Utility 
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Theory, which appeals to ratios of payoffs rather than differences of payoffs (as the relative 

expectation principles do). With respect to the domain of application of this paper (finite 

standard probabilities and payoffs), we believe that Bartha’s approach does not make any 

comparative assessments beyond those we endorse above. Moreover, Relative Utility Theory has 

the disadvantage of relativization to an arbitrary third option.
12

 Each of these proposal merits 

careful examination, but we cannot give it here.  

Our principles are, of course, controversial. We hope, however, that we have motivated 

them enough to be taken seriously. 
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12
 For elaboration of these issues, see Colyvan and Hájek (2015). 
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